Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification
نویسندگان
چکیده
Accurate land cover classification information is a critical variable for many applications. This study presents a method to classify land cover using the fusion data of airborne discrete return LiDAR (Light Detection and Ranging) and CASI (Compact Airborne Spectrographic Imager) hyperspectral data. Four LiDAR-derived images (DTM, DSM, nDSM, and intensity) and CASI data (48 bands) with 1 m spatial resolution were spatially resampled to 2, 4, 8, 10, 20 and 30 m resolutions using the nearest neighbor resampling method. These data were thereafter fused using the layer stacking and principal components analysis (PCA) methods. Land cover was classified by commonly used supervised classifications in remote sensing images, i.e., the support vector machine (SVM) and maximum likelihood (MLC) classifiers. Each classifier was applied to four types of datasets (at seven different spatial resolutions): (1) the layer stacking fusion data; (2) the PCA fusion data; (3) the LiDAR data alone; and (4) the CASI data alone. In this study, the land cover category was classified into seven classes, i.e., buildings, road, water bodies, forests, grassland, cropland and barren land. A total of 56 classification results were produced, and the classification accuracies were assessed and compared. The results show that the classification accuracies produced from two fused datasets were higher than that of the single LiDAR and CASI data at all seven spatial resolutions. Moreover, we find that the layer stacking method produced higher overall classification accuracies than the PCA fusion method using both the SVM and MLC classifiers. The highest classification accuracy obtained (OA = 97.8%, kappa = 0.964) using the SVM classifier on the layer stacking fusion data at 1 m spatial resolution. Compared with the best classification results of the CASI and LiDAR data alone, the overall classification accuracies improved by 9.1% and 19.6%, respectively. Our findings also demonstrated that the SVM classifier generally performed better than the MLC when classifying multisource data; however, none of the classifiers consistently produced higher accuracies at all spatial resolutions.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملA decision fusion method based on multiple support vector machine system for fusion of hyperspectral and LIDAR data
Fusion of remote sensing data from multiple sensors has been remarkably increased for classification. This is because, additional sources may provide more information, and fusion of different information can produce a better understanding of the observed site. In the field of data fusion, fusion of light detection and ranging (LIDAR) and optical remote sensing data for land cover classification...
متن کاملMonitoring Forests: Parameters Estimation and Vegetation Classification with Multisource Remote Sensing Data
2 Acknowledgments 3 Table of contents 4 Chapter 1 Introduction 6 1.1 Thesis objectives, motivations and innovation 7 1.2 Materials and methods 15 1.2.1 The Sierra Nevada, U.S.A (study site 1) 16 1.2.2 The Alps, Bozen, Italy (study site 2) 16 1.2.3 Gola Rainforest National Park, Sierra Leone (study site 3) 17 1.3 Thesis outline 18 1.4 References 19 Chapter 2 – Remote sensing of forested landscap...
متن کاملSynergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
Land cover mapping of the urban environment by means of remote sensing remains a distinct challenge due to the strong spectral heterogeneity and geometric complexity of urban scenes. Airborne imaging spectroscopy and laser altimetry have each made remarkable contributions to urban mapping but synergistic use of these relatively recent data sources in an urban context is still largely underexplo...
متن کاملClassifier Fusion of Hyperspectral and Lidar Remote Sensing Data for Improvement of Land Cover Classifcation
The interest in the joint use of remote sensing data from multiple sensors has been remarkably increased for classification applications. This is because a combined use is supposed to improve the results of classification tasks compared to single-data use. This paper addressed using of combination of hyperspectral and Light Detection And Ranging (LIDAR) data in classification field. This paper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016